乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第15章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    根据外部的需要,铁可以从此系统中排出,也可以结合进来。经常发现,复杂化学聚集体如Polyoxometalates,以规则的凸多面体为基础,如同柏拉图固体。但是,它们的集体的电子性质和(或者)磁性质不可能归结为这些建筑块的已知性质。根据“从分子到材料”的结合酶,超分子化学应用此保守自组织的“蓝本”,在纳米尺度上去建筑起复杂的材料,它们在催化、电子、电化学、光学、磁和光化学诸方面具有新颖的性质。复合性质的材料是极为有趣的。超分子晶体管是一个例子,它可能会激起化学计算机的革命性的新发展。

        在自然进化中,非常大和复杂的分子系统也是由基因指导的过程逐步产生的。纳米分子化学的保守自组织过程是非基因控制的反应。只有保守自组织和非保守自组织的聪明结合,才可以激发起基因出现之前的前生物进化。但是甚至在复杂有机体进化期间,保守自组织也必定会出现。在人类的技术进化中,这一原理被一再发现并得到应用。

        另一方面,有一些系统,其有序和功能发挥并非是降低温度来实现的,而是保持某种通过其间的能量和物质流来实现的。熟悉的例子如动植物那样的活系统,它们需输入生物化学能。这种能量过程可以引起宏观模式如植物的生长、动物的行进等等的形成。但是这种有序的形成,决非是活系统专有的(参见第3章)。它是一种远离热平衡的耗散(不可逆)自组织,在物理学、化学和生物学中都可以发现。

        正如热力学第二定律所说,与环境没有任何能量和物质交换的封闭系统,将向近平衡的无序状态发展。无序的程度由一种叫做“熵”的量来度量。热力学第二定律说,封闭系统中熵总是向其极大值增加。例如,使得一个冷物体与一个热物体接触,热的交换将使得两个物体都获得同样的温度,即一种无序的均匀的分子序。把一滴牛奶滴入咖啡中,牛奶最终扩散成一种无序的、均匀的牛奶咖啡混合物。人们从来没有观察到相反的过程。在此意义上,按照热力学第二定律,过程是不可逆的,具有唯一的方向。

        流体力学中的一个例子是贝纳德不稳定性,它已经在2.4节的开头描述过。当加热流体层(图2.20a)达到某个临界值时,它开始了一种宏观运动(图2.20b)。因此,一个动态的很有序的空间模式是从无序的均匀的状态中出现的,只要保持了通过此系统的一定的能量流。

        流体动力学中的另一个例子是流体绕一个圆柱流动的流。外部的控制参量又是流速的瑞利数R。在低速时,此流以均匀的方式出现(图2.27a)。高速时,出现了具有两个涡旋的新的宏观模式(图2.27b)。速度进一步增高,涡旋开始变成振荡(图2.27c-d)。在一定的临界值时,在圆柱后出现了湍流的无现和混沌的模式(图2.27e)。图2.27a-e示意出可能的吸引子:一个或多个不动点,分叉,振荡和准振荡吸引子,最终是分形混沌。

        现代物理学和技术中,激光是一个著名的例子。固体激光器中有一根嵌进了特殊原子的材料棒。每一原子都可以由外部能量激发,导致光脉冲发射。材料棒末端的镜子可以用来对这些脉冲进行选择。如果脉冲是沿铀方向的,那么它们就会被多次反射,在激光器中呆的时间就比较长,而在其他方向上就会离去。在泵浦能量小时,激光器如同一盏普通白炽灯,因为此时原子相互独立地发射光脉冲(图2.28a)。到达一定的泵浦能量时,原子以一定的相振荡,形成单一有序的巨大长度的脉冲(图2.28b)。

        激光束是一个由远离热平衡的耗散(不可逆)自组织形成宏观有序的例子。激光的能量的交换和处理过程表明,它显然是一个远离热平衡的耗散系统。

        若是在从前,科学家便会假设是某种妖或神秘的力导致了这些系统变成有序的新模式。但是,正如在保守自组织的情形,耗散自组织可以用一般框架来解释,它具有大家熟知的精确的数学形式。例如,让我们从一个旧结构——均匀流体或杂乱发射的激光——出发。旧结构的不稳定性由外部参量的变化引起,最终导致新的宏观空-时有序。在接近不稳定点,我们可以区分出稳定的和不稳定的集体运动或波(模)。不稳定模开始影响和决定稳定模,因此稳定模可以被消除掉。赫尔曼·哈肯贴切地把这一过程称作“役使原理”。实际上,稳定模在一定的阈值受到不稳定模的“役使”。

        在数学上,这种程序被称作快弛豫变量的“绝热消去”,例如,从描述相应系统中几率分布变化的主方程进行绝热消去。显然,这种消去程序可以减少大量的自由度。新结构的形成在于:剩余的不稳定模作为序参量,决定了系统的宏观行为。微分方程描述了宏观参量的演化。与微观水平上系统元素(如原子、分子等等)的性质不同,序参量标志着整个系统的宏观特征。在激光的情形,一些慢变化的(“无阻尼的”)模的幅度可以作为序参量,因为它们开始役使该原子系统。在生物学语言中,序参量方程描述了模之间的“竞争”和“选择”过程。但是,这些当然只是一种比喻的说法,它们是可以用上述的数学程序来精确表达的。

        一般地讲,作为概括,一个耗散结构可以在一定阈值变得不稳定,可以被打破,从而形成新的结构。作为相应的消去了大量自由度的序参量的引入,耗散有序的形成伴随着复杂性的巨大降低。耗散结构是复杂系统的一个基本概念,它们在本书中被用来为自然科学和社会科学的过程建立模型。耗散结构的不可逆性,可能使我们回想起赫拉克利特的名言:一个人不能两次踏进同一条河流。显然,不可逆性违反了时间的不变对称性,这种对称性是牛顿和爱因斯坦的经典的(哈密顿的)世界的标志。但是这种经典的观点最终将被证明,它只不过是一个平稳变化世界中的特例。另一方面,赫拉克利特还相信,某个生序原理使无规的相互作用得到和谐,并创造出物质的新的有序态。我们必须要看一看,耗散系统的数学框架是否适合于这种规律的普遍特征。

        一个物质进化的一般性框架将以所有物理力统一的理论为基础(图2.29)。从爱因斯坦的广义相对论推导出来的宇宙演化的标准模型,必须能够为量子理论的原理所解释。迄今为止,只有几个关于宇宙演化的数学模型或多或少令人满意,可以部分地接受实验的确证。然而,这些模型的大意是,复杂性不断增加的结构(基本粒子、原子、分子、行星、恒星、星系等等)的形成,可以用宇宙相变或对称性破缺来解释。

        在宇宙进化中,在不可能一般地区分出基本粒子(尽管它们可以互相转变)的意义上,起始状态被假定是近均匀的和对称的。在宇宙演化过程中,临界值是随着对称破缺而一步一步地实现的,在此临界值处对称性被偏差和涨落打破,新的粒子和力产生出来,皮埃尔·居里说:“对称创造出现象。”但是我们必须意识到,对称破缺和相变的宇宙过程是通过高能物理学的实验和理论而进行的一种数学外推。

        今天,物理学区分了四种基本力:电磁力、强力、弱力和引力。它们在数学上用所谓规范场来描述。基本粒子物理学力图用一种相应于宇宙起源状态的基本力把这四种物理力统一起来。电磁力和弱力已经在欧洲核子研究中心(CER)的加速环中非常高的能量区统一起来了(图2.29)。统一意味着,在非常高的能量状态,不可能区分开“感觉到的”弱力(电子、中子等)与“感觉到的”电磁力。它们可以用同样的对称群(U(1)×SU(2))来描述,即它们对于这种群的变换具有不变性。在较低能量的特定的临界值,此种对称性破缺成相应于电磁力和弱力的部分对称(U(1)和SU(2))。

        物理上,这种对称性破缺意味着相变。它与两种新的物理力及其基本粒子的形成相联系。自发的对称破缺过程是众所周知的。例如,我们早餐食用的鸡蛋在其顶部的对称性位置是不稳定的。往何微小的波动都使得它自发地落到不对称的、但能量上稳定的位置。冷却到临界温度,铁磁体发生从无磁性到有磁性状态的相变。基本的两极自发地选取两种可能磁性方向之一,打破了自旋对称性,形成了新的宏观性质(磁性)。

        重子(质子、中子等)与介于通过强力相互作用的复杂多样性,是由所谓的有3个自由度——即所谓的红、绿和蓝“颜色”——的夸克造成的。例如,一个重子由3个夸克构成,这些夸克是可以用3种颜色加以区别的。在其强子对于环境是中性的(没有颜色)意义上,这3种颜色是互补的。数学对称群(U(3))标志了夸克的这种颜色变化是人们所熟知的。

        在电磁相互作用和弱相互作用统一起来以后,物理学家又力图实现弱电力和强力的“大统一”,并在最后实现所有四种力的“超统一”(图2.29)。已经提出了几种超统一研究纲领,例如有超引力理论和超弦理论。数学上,它们用具有更一般的对称结构的张量(“规范群”)来描述,其中包括了四种基本力的部分对称性。