乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第18章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    热力学的最初的原理是由卡诺发展起来的(1842)。他的原理是在分析蒸汽机产生的机械力中发现的。大体上,热力学第一定律说,能量既不能创造也不能消灭。不管是机械功、电能,还是化学转化,自然界中能量在不断地转化,一个封闭系统中的总能量却保持不变。与爱因斯坦的质能相当性相一致(对照2.2节),第一定律在本世纪已经扩展为质量能量守恒原理。

        克劳修斯注意到第二定律在物理演化中具有根本性的重要意义,他从古希腊词汇中借来“熵”这个术语,用于描述演化或转化。数学上,一个系统的熵变化被定义为可逆地加到系统的热除以其绝对温度。按照依利亚·普里戈金的见解,人们必须涉及这样一个事实:所有的系统都有其环境。因此,更一般地说,在某一时刻的熵的变化,应是环境供给系统的熵变化率与系统内部熵产生率之和。按照热力学第二定律,系统内部的熵的产生率大于或等于零。对于封闭和孤立系统,熵不会由环境供给(或释放到环境中),我们就得到了经典的克劳修斯陈述:熵不断增加或当热力学平衡达到时就保持不变。换言之,自然界中包括物理、化学、生物或(正如我们将看到的)信息转化的过程,都不会不以能量为代价——以熵来表述——而自发地发生。

        熵是系统的一种宏观性质,如同体积和大小。因此,热力学最初只是一种唯象理论,描述了宏观系统的可能的热分布。波耳兹曼对这种实证主义态度不满,试图提供一种统计力学的解释,把系统的这种宏观状态归结为例如供给微观分子的热的力学。受到微观-宏观差别——这是进化理论的关键——区分的驱动,波耳兹曼赋予热力学最初的统计解释。统计热力学中,不可逆性就以这种差别为基础。

        一般来说,统计力学用微观态来解释如密度、温度等宏观态。在此意义上,可观测的宏观态被认为是由大量微观态W实现的。为了定义数目W,大量的同种类的例如原子、分子、晶体等等独立机制要加以考虑。它们从不同起始相状态按照其运动方程发展其微观态。如果一个宏观态由W个微观状态实现了,那么相应宏观态的波耳兹曼嫡量H就可以假定为与W的对数成正比,即H=kln  W,k是波耳兹曼常数。在一个连续的态空间,波耳兹曼表达式可以用速度分布函数的积分来概括。在波耳兹曼看来,H度量相应系统的观测宏观态的分子排列几率。

        波耳兹曼的还原论在历史上遭到了物理学家、数学家和哲学家的强烈反对。实证主义的物理学家和哲学家如恩斯特·马赫批评波耳兹曼的分子和原子假设那时它们是经验上无法确证的。但是在分子、原子被成功地发现以后,这种批评就成为历史往事了。

        洛喜米特可逆悖论是最重要的反对意见。由于力学定律对于时间反转具有不变性(对称性),每一过程都是时间可逆过程。这似乎与不可逆过程的存在相抵触。波耳兹曼回答说,对于他所谓的H定理形式的热力学第二定律,不可能仅仅从(可逆的)力学定律推导出来,而需要附加上极度不可几的起始条件。第二定律被认为对于非常高度可几事件有效,但是并没有保证。不可逆过程仅仅是频度的或几率的,可逆过程是罕见的不可几的。因此,第二定律允许局域的涨落偏差(例如布朗运动)。

        另一种反对意见是亨利·彭加勒和恩斯特·泽梅罗提出来的。他们强调,具有有限多个自由度的力学系统的每一状态,必定在一定时间间隔之后至少大致地重现。因此,就不可能有一个与熵增相联系的时间之失。波耳兹曼回答道,随着自由度的增加,返回时间变得极度地长。宇宙学中,在波耳兹曼的意义上有两种观点:(1)宇宙开始于极其不可几的起始条件;(2)当宇宙充分大时,就可能在某些地方出现偏离均匀分布。图3.1  示意出波耳兹曼的涨落假设。他假定,整个宇宙处于热平衡状态,即最无序状态。波耳兹曼相信,时间的两个方向是完全对称的。因此,局域熵在两个时间方向上类似地增加,达到熵极大时变成扁平。

        生命作为发展着的有序系统,仅仅在熵发生强烈变化的区域、即图3.1中熵曲线的两个倾斜部分才是可能的。两个箭头标示了波耳兹曼的局域世界,在此可以出现生命。因此,在波耳兹曼的意义上,在此不存在客观的唯一的时间箭头,只存在熵增的两个可能方向之一,它是生活在图3.1示意的倾斜区的两个可能局域世界之一的人们的主观经验。在我们对波耳兹曼的观点提出详细批评之前,让我们先扼要回顾一下他以热平衡热力学为背景的生命理论,它对本世纪科学产生的影响延续至今。

        路德维希·波耳兹曼(184-1906)是第一位试图将生物学进化理论归结为19世纪的热力学和化学的科学家。对于上个世纪末的科学家来说,热力学第二定律似乎预见了自然的最终的无序、死亡和腐朽,而达尔文的进化论体现了有序活系统的复杂性不断增加的发展,这似乎是个大问题。当然,第二定律是针对封闭系统的,而活系统必定是开放的,发生着与其环境的不断的能量、物质和信息交换。然而,在一个无序和热平衡的海洋中,局域复杂性的增加如何是可能的?

        波耳兹曼主张的解释,已经在向我们提示现代生物学的分子自催化和代谢概念。最初的原始生命的起源(如细胞),被归结为无生命的分子建筑块的存在,波耳兹曼将此设想为类似布朗运动过程。植物作为细胞的聚集体是有序的复杂系统。因此,在热力学第二定律的意义上它们是不可几的结构,它们必须在阳光下与它们体内的自发熵增趋势进行抗争。由于太阳的高温,大地获得了熵相对低的能量,这被用来补偿植物的自发熵增。这个过程是由光合作用来实现的,波耳兹曼在1886年提出了一种物理学解释:

        因此,一般的生存斗争,既不是为了基本材料……也不是为了能量……而是为了使熵从灼热太阳那里转移到冷凉大地而变得有用。

        波耳兹曼将他的以物理学为基础的进化理论推广到神经系统的历史和记忆、意识的形成。他争辩道,原始有机体对外部印象的敏感性,导致了特殊神经和视觉、听觉、感觉、运动等等特殊器官的发展:

        大脑被看作建立世界模型的装置或器官。因为这些模型对于种族生存有巨大益处,人的大脑按照达尔文的理论如同长颈鹿脖子或白鹤长嘴那样完美地发展起来。

        甚至建立概念和理论的能力也用进化来解释。波耳兹曼试图论证,人的空间、时间和因果性范畴是大脑为适者生存而发展起来的工具。他毫不犹豫地把生物进化推广到甚至是社会文化发展和人类史方面。1894年,威尼斯的医生S.埃克斯纳以波耳兹曼精神讨论了《作为人生斗争武器的道德》。1905年波耳兹曼自己发表了冠以迷人题目的演讲《熵定律解释和用几率原理来计算爱情》。显然,波耳兹曼的达尔文主义达到了极点。

        在本世纪之初,生命仍然不可能用物理学和化学基础来解释。经典力学——这个17世纪和18世纪自然科学的基础——假定了确定论的、时间可逆的自然定律,对生命的不可逆过程提供不了任何解释。一个无摩擦的摆钟作为一个振荡的力学系统,时间可逆地运动着,原则上将无限地运动下去。人有出生、成长和死亡,这是为什么?  19世纪的热力学处理的不可逆过程针对的是将被推向极大熵或无序状态的封闭系统。复杂的活系统的发展如何得到解释?在波耳兹曼统计解释的意义上,有序和生物复杂性的形成只能是不可几的事件,是(如同雅克·莫诺后来说的)“处于宇宙边缘的”局域宇宙涨落,它们对处在热平衡的整体宇宙是没有意义的,最终将消失掉。按照莫诺的观点,我们只不过是一种阿尔贝·加缪的存在主义的哲学选择,人类的尊严将最终消亡在无意义的生物和文化进化中。天才的路德维希·波耳兹曼的悲剧性死亡——他1909年的去世被认为是自杀,并被看作是这种态度的一个象征。但是,波耳兹曼的热力学并没有明确解释生命起源。他仅仅是证明了,他的对热力学第二定律的统计解释与达尔文进化并不抵触。

        在17世纪和18世纪的经典力学和19世纪的热力学之后,量子力学成为物理学的基础理论。尽管有海森伯的不确定性原理,量子力学的定律与经典力学都是以时间可逆为特征的。在处理复杂性的还原论纲领上,一个极大的成功是分子的量子化学可以用量子力学定律来解释。1927年海特勒和伦敦成功地将适用于原子、亚原子的薛定谔方程,修订应用于分子系统。在化学中没有其他的特殊的力,只不过是人们熟知的物理力,目的论看来在化学中也被排除了。

        化学是否已经完全还原为物理学了呢?严格地说,完全没有!分子轨道的结构模型仅仅是对量子力学相关性的抽象而引入的。相反,例如原子的电子在包利原理的意义上是不可分辨的,它们被化学家用来作为准经典客体,沿着原子核的明确区分的轨迹运动。有一些众所周知的化学抽象程序(波恩-奥本海默和哈特-福克程序),以近似的非经典量子世界的准经典模型的方式引入电子轨道。