乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第50章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    

        约翰·冯·诺意曼和奥斯卡·摩根斯腾的《博奕论和经济行为》(1943),开创了一个非线性数理经济学的新时代。线性编程、运筹研究,以及甚至数理社会学都受到这本名著的影响。在《博奕论》一书中,冯·诺意曼和摩根斯腾合理地假定,行动中的个人总是按照某种收益性来最大化自己的利益。一般地,使一类可能的行动a1,……,am和一类可能的状态s1,……,sn配成数对(ai,sj),式中1≤i≤m且1≤j≤n,收益uij是其一个映射。可能的收益uij构成一个(m×n)矩阵。

        例如,人们已经提出来若干种在不确定性条件下进行决策的合理性标准。不确定性意味着不知道可能收益的概率。主要运用的是所谓的最大最小收益标准。在这种情况下,每一种可能的行动ai都有相应最小收益值的矩阵元,即收益矩阵(uij)中第i行ui1,……,Uin中的最小值。于是,规则要求:选取的行动使其矩阵元取最大值。简言之,最大最小值规则选取这样的行动:最不利情况下的受益最大化。该规则可以非常容易地、机械地运用于收益矩阵。

        哲学家卡尔·加斯塔夫·亨佩尔想像出来如下的一个例子。在两口缸子中,装有尺寸相同的一些球,它们无法通过触摸而加以区别。在第一口缸子中,小球是铅球和铂球;在第二口缸子中,小球是金球和银球。游戏人被允许作为获取免费礼物从其中的一口缸子中取出小球。游戏人不知道缸子中的小球的分布概率。估计铂球价值为1000,金球价值为100,银球价值为10,铅球价值为1。

        最大最小规则认为应该选取从第二口缸子中获得小球。在这口缸子中,最吃亏的情况是获得银球,而在第一口缸子中最吃亏的情况是获得铅球。显然,最大最小规则相当于一种悲观主义的世界观。在游戏中,游戏人假定了一个充满着敌意的对手。于是,最大最小规则建议采取一种最有用的行动。

        而一种乐观主义的态度则相当于所谓的最大最大收益标准。游戏人坚信,每一次可能的行动都将得到最好的可能结果。因此,看来合理的是采取获得最好可能结果的行动,这至少可以跟其他行动获得同样好的最有利结果。在上述例子中,最大最大规则建议选取第一口缸子。

        一位谨慎的游戏人也许不愿意选取最大最小规则。但在另一方面,如果知道了对手怀有敌意,最大最小规则才是合理的。一些数字的例子是支持这种解释的。对于两种可能的状态s1,s2,以及两种可能的行动a1,a2,收益矩阵如图6.5a所示。

        最大最小规则建议采取行动a2。甚至把数字1减少到非常微小的值例如0.000001,而数字100放大到非常大例如10[15]时(图6.5b),最大最小规则仍然建议采取行动a2。对于一位假定了一位绝对敌意的对手的游戏人,这种决策实际上是合理的。在任何情况下,对手都将力图阻止游戏人实现最大收益的状态。否则,采取最大最小值规则就将是不合理的,因为a1将会是更好的行动。如果状态s1实现了,游戏就不得不放弃收益增值,因为它太小了。在状态s2的情况下,他将以行动a1获得一个非常大的利益增值。

        为了判断这种决策是合理的,萨维奇引入了所谓的最小最大冒险标准。他主张,用冒险价值rij的矩阵(图6.5c)来取代收益uij的矩阵(图6.5a)。为了获得第j列中最大收益价值,必须把冒险价值rij加入到收益价值uij中。

        在矩阵6.5a中,第一列的最大收益价值是1,在第二列中是100。于是,冒险矩阵就如图6.5c所示。

        最小最大冒险规则要求:选取使得最大冒险最小化的行动。由于a2的最大冒险的价值是99,a1为1,看来合理的是选取行动a1。当然,也只有在一定的特殊条件下这个规则才是合理的。还有许多其他的合理性标准。

        接下去是所谓的悲观乐观标准。它建议在悲观的最大最小规则和乐观的最大最大规则之间获得一种答案。假定对于行动ai,收益ui1,……,uin的最小值是mi,最大值是Mi。让a是一个常数,使得0≤a≤1成为乐观悲观矩阵元。于是,行动a1相应有a矩阵元ami+(1-a)Mi。悲观乐观规则倾向于具有较大a矩阵元的行动。当然,只有给定了一个特定的a,才定义了一个特定的标准。这些例子表明,合理性的绝对标准是不存在的,存在的只是一类相应于在一定条件下的不同乐观程度和不同悲观程度的标准。

        冯·诺意曼和摩根斯腾的《博奕论》一书中,考虑了作为个人或群体之间进行竞争或合作的相互作用结果的社会或市场的稳定性。在许多情况下,他们对于实际的经济、社会和心理复杂性采取了过度的简化。每一位游戏者只能恰好确定他的可能行动以实现某些状态和可能的受益。一般来说,博奕论采取了线性(叠加性)原理假设,在一个社会(游戏)中的许多个人的复杂相互作用被归结为若干个人的许多简单相互作用的加和。

        于是,对两人游戏的研究在博奕论中占据着重要的地位。在一个事件中,游戏人1选取行动a1、游戏人2选取行动a2,被表示为数对(a1,a2)。在此事件中,游戏人1的收益是u1(a1,a2),游戏人2的收益是u2(a1,a2)。一类重要的游戏,其特征是在每一事件中,两位游戏人的收益恰好相反,即u1(a1,a2)+u2(a1,a2)=0(“零和”博奕)。任何的合作都被排除了。于是,最大最小规则就显得是合理的,如果没有关于对手的合理性的特定信息。在其他情况下,合作常常是合理的。

        数学上的根本性问题是,在此博奕中存在着平衡点。如果完全没有合作,就以如下方式定义两位游戏人的可能行动的平衡点。一个事件(a1,a2)是游戏的平衡点,如果游戏人1的所有行动a1的收益值u1(a1,a2)大于或等于u1(a1,a2),以及如果游戏人2的所有行动a2的收益值u2(a1,a2)大于或等于u2(a1,a2)。

        假定游戏人2选取了行动aa,而游戏人1试图使收益最大化,那么他就可以选取行动a2;反之亦然。平衡点是稳定的,如果游戏人知道他或她的对手也处于平衡点并且没有理由要改变其行为。显然,这种平衡定义没有考虑任何动力学方面。但是,实际的社会或经济行为却是由时间中的复杂动力学所确定的。交易循环是众所周知的经济动力学的例子。于是就提出了问题:这些动力学是否受到平衡态的吸引,以及这些平衡态是否是稳定的。一般来说,博奕论并不考虑“蝴蝶效应”,即不考虑小的行为失误有时会引起总体的危机甚至引起混沌。

        冯·诺意曼和摩根斯腾的博奕论并不完全拘泥于线性数理经济学的传统,它还发展起来经济福利理论的思想。一个理性的社会被假定为选取了帕雷托优化(Pareto-optimal)的利益分配。如果没有对于其他个体福利的减少就不可能增加这一个体的福利,这种利益的分配被称为是帕雷托优化的。满足这种弱帕雷托优化福利条件仍然是不充分的,还必须考虑到潜在的联合。博奕论中的合作解理论,主要是追随了福利经济学、交际手段,以及往往惯于社交的自私政治家的思想。数学上,福利经济学的政治和社会框架的公正、无偏见以及平等竞争等概念的确定,都被归结为某种对称性原理。

        博奕论是一种精确的数学理论,它在经济学中的应用往往被估价过高了。其局限性是它对社会作了典型的线性假设。然而,博奕论是一项了不起的数学发明,它主要是由冯·诺意曼提出来的。值得注意的是,在本书所涉及的本世纪几乎所有科学领域的发展中,约翰·冯·诺意曼都是一位中心人物。他曾致力于程序控制的计算机、自动机理论、量子力学和博奕论的发展。而且,他还对自然科学和社会科学中的跨学科数学模型深感兴趣。所有这些辉煌的发展都主要是由线性原理支配着。但是,冯·诺意曼还是最先认识到自复制和自组织的重要性的科学家之一。他的元胞自动机理论就是一个著名的例子。

        6.3复杂经济系统、混沌和自组织

        从方法论的观点来看,主流经济学往往受到线性数学、经典力学、平衡态热力学模型的启发,有时也受到达尔文进化论的启发。古典经济模型中已经假设了一种理性的经济人,理性经济人通过成本最小化、利益最大化来追求收益最大化。这些理性的角色被假定通过在市场上交换商品而发生相互作用,市场是通过一定的价格机制来实现需求和供给之间的经济平衡的。

        要描述经济的动力学,就需要有包含许多经济量——也许来自数千个部门和数百万角色——的演化方程。经济学如同其他领域一样,一切事物都依赖于其他事物,为了尽量地模拟经济复杂性,这种方程就将是耦合的、非线性的。但是,甚至是完全确定论的模型也会产生出高度不规则的行为,这样的行为是不可能作出长期预测的。