乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第7章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    其他物体的运动是由这些元素及其自然的运动来决定的,每一种运动都受此运动支配。最完美的运动是圆周运动。它是可以一直运动下去的,这就是为什么要规定一种不朽的元素。这就是第五种元素(精英),它构成了不变的大球和恒星。尘世(月下)世界中的不断变化性,与天上(月上)世界的不变现则性区分开来。这些转变过程中伴随着那四种元素,它们具有独特的直线运动,特别是具有指向世界中心的运动,其中重元素土和水竞相奔向其自然的中心,而指向月球圆周的直线运动中,轻元素竞相向上奔向其自然的归宿。

        在这些自然的运动中,还有自由落体运动。但是,亚里士多德并没有像伽利略那样,以理想实验形式从独立的运动出发来进行探讨。在复杂环境中观察到的落体,没有从其摩擦(“耗散”)力中抽象出来。在其自由降落过程中,落体在空气介质中下落如同石头在水中下沉。因此,亚里士多德把自由降落想像为一种流体动力学过程,而不是一种真空中的加速过程。他假定了一种恒定的降落速度u,它正比于物体的重量p,反比于介质(例如空气)的密度d,用现代表示法就是。u-P/d。这个比例方程同时也为亚里士多德反对原子论者的虚空提供了一种证据。在真空中,密度d=0,所有的物体都将无限快地降落,这显然是不会发生的。

        (人为)推动的运动的一个典型例子是投掷,它也是在其复杂的“耗散”力的环境中来考察的。按照亚里士多德的观点,非生命物体的运动只是不断的外部运动因的结果。想像一下,古希腊的颠簸的道路上的两轮车,当驴子(或奴隶)停止推或拉时,车就会停下来。但是为何当一块石头从手中投掷出去后它还继续运动呢?在亚里士多德看来,在虚空中是不可能有超距作用的。因此,亚里士多德说,投掷者把运动传递给了石头周围的连续介质,这将石头推到远处。对于推动或拉动的速度u,亚里士多德断言,这里有比例关系  U-K/p,K是所施加的力。当然,这些并非是与测量的量相联系的数学方程,而是定性的决定性因素的比例,在中世纪的亚里士多德派的物理学中它首次被表述成了这种形式。于是,与伽利略-牛顿的动力学相反,在亚里士多德的动力学中,所有的位置(直线)变化都需要有某种运动因(力)。中世纪的冲力论改变了亚里士多德的动力学,把运动因归结到投掷出去的物体中的“冲力”,而不是由外部媒介进行的传递。

        亚里士多德派的动力学是如何解释天上的宇宙规律的呢?宇宙模型的中心对称性以(未受力的)球体的圆周运动——这被认为对于“天上”元素是自然的——为基础,以及以宇宙中心的自然中心理论为基础。托勒密进一步以这个各向同性模型为基础,用一种三段论的充足理由律来解释地球的位置。假定所有方向都是完全等价的,地球为何要向这一方向或那一方向运动就是没有理由的。

        地球处于中心的中心对称模型是亚里士多德的老师柏拉图提出来的;在地球周围的整个天空,都围绕着一条穿过地球的天轴向右旋转。太阳、月亮和行星都在球面向左旋转,它们与地球的距离依次是:月亮、水星、金星、太阳、火星、木星和土星。最外层是带着恒星的球面。按照柏拉图-毕达哥拉斯概念,旋转周期相互之间具有整数关系。所有的旋转时间有共同的倍数,在其结束处所有的行星正好又处在相同位置。它们的运动都会各自产生出一种声音,因此球体运动的音调合在一起就形成了天球的和谐,与校好的音阶一致。宇宙的几何的、算术的和美学的对称性,在环宇中奏响一种天球的和谐音乐。随后,精确的观察使人们对这种强调宇宙对称性的模型产生疑问。一个困难的问题来自不规则的行星轨道,特别是它们的逆行运动。天空中的不规则性引起了人们的不安,特别对于承袭毕达哥拉斯传统的哲学家更是如此,他们已经习惯于把天上——与地球相反——理解为永恒对称的、和谐的领域。

        柏拉图提出了一个著名的问题,以减少天上运动的复杂性:使用规则、有序的圆周运动来“拯救”行星现象;这是一种运动学的解释。当波加的阿波罗尼(约前210)建议放弃天球的共同中心时,已经提出一个观察曲线的精确模型。但是,仍然保持了球形的行星运动和等速球体。按照这种主张,行星在球面上作匀速转动(本轮),它们的中心被设想成沿中心点(地球)的一个大圆圈(均轮)上作匀速运动。通过适当地调节速度和两个圆圈运动的直径并变动其运动方向,就有可能作出某种未预料的曲线,而这些在从开普勒到托勒密的天文学中都找到了部分应用。一个个模型的球体对称性因而得到了保留,即使它们不再有共同的中心而是有种种不同的中心时也是如此。

        下面的本轮-均轮技巧显示出,通过适当地把匀速的圆周运动结合起来,可以得到多种表现的运动形式。这使得柏拉图派的哲学家的观点更容易理解:在现象的变化背后是永恒的不变的形式。在图2.1中,一个椭圆的轨道是由均轮的运动与本轮的运动结合而成的。图2.2显示了一种封闭的旋轮线。以这种方式,行星与地球之间的距离的变化也就被表示出来。原则上,甚至角度的形象也可以产生出来。当本轮的直径接近于均轮的直径时,就完全是一条直线了。如果人们改变一个行星的从东到西运动的速度,使之沿一个本轮从西到东运动,那么通过适当地组合一个本轮运动和一个均轮运动,还可以产生出三角形和长方形。

        如果人们使天体沿第二个本轮作圆周运动,这第二个本轮的中心点是沿第一个本轮运动的,那么就可以产生出多种椭圆轨道、反映-对称曲线、周期曲线以及非周期轨道和反对称曲线。从纯粹的数学和运动学的观点看,柏拉图的“拯救现象”问题是完全解决了。因此,柏拉图式的以匀速圆周运动(被阿波罗尼和托勒密进行了修订)来减少复杂性的做法,原则上也许直至今日还对科学有影响。无论如何,它是不可能由曲线途径的现象学描述来否证的。特别是,从这种观点来看,无论是在所谓的哥白尼革命中将地球和太阳的位置对换,还是把圆周轨道改变成椭圆轨道的开普勒变化,都显得是次要的,因为他们的起始条件都可以追溯到与本轮-均轮技巧符合的对圆周运动的组合。这就带来了两个问题:①这种断言是如何在数学上得到支持的?②如果它得到这种支持,那么它为何在现代科学的曲线理论的应用中却没有起作用呢?为了精确地对第一个问题作出一般性的回答,有必要返回到分析几何的现代结构。但是在历史上,哥白尼和开普勒也知道,他们所用的曲线(例如椭圆)也是可以通过本轮-均轮技巧来重构的。

        首先,我们必须记住,平面上的点可以用复数X=X+iy=  reiθ来代表,相应的笛卡尔坐标是(x,y)或极坐标是(r,θ)。复数的加法相当于向量的加法。一个具有中心c、半径r和周期T的匀速圆周运动可以表示为

        z=c+rei((2πt/T)+α)=c+re((2πt/T)+α)    (2.1)

        式中该点的时刻是t,初相是α。现在假定点A按照方程z=f(t)运动。让点B相对于A作圆周运动,它有半径r,周期T,初相a。B点的运动就由如下方程描述

        z=f(t)+rei(2πt/T+α)  (2.2)

        于是它就可能描述点B沿某个本轮的运动,其本轮中心绕A运动。新的本轮的加法在数学上是把一个新项re  ei(2πt/T+α)加到z的表达式中。显然,r  ei(2πt/T+α)=reiαe2πit/T=aeikt其中复数a≠0,K是实数。在逆行运动情形下,T或k分别为负。n个本轮叠加成的运动于是表示为方程

        z=a1eik1t+a2eik2t+…+aneiknt    (2.3)

        让我们首先考虑平面Z=f(t)上的周期运动(例如其周期为2π)数学上,我们假定f在有限变化中是连续的。那么对于f可以表示为一个均匀收敛级数

        f(t)=    (2.  4)

        n=-8

        因此,容易从数学上证明f(t)以通过求和获得近似

        Sn(t)=  (2.5)

        其精确度随着N的增加而增加。

        函数f的确是均匀收敛的。因此对于任意小的ε>O,可选择No使得对于所有的N≥No和所有的t,都有

        |f(t)-SN(t)|