乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第8章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    这种结果在数学上为哈罗德·玻尔关于近周期函数的命题所支持(1932)。第二个问题是,为何解释运动轨道的本轮-均轮技巧被抛弃了,指出观察中遗漏了曲线是无法作出回答的。数学上,观察曲线——无论它是多么的稀奇,只要用柏拉图-阿波罗尼的古代的降低复杂性的策略,原则上就是可以解释的(前述是非常宽的数学条件)。

        不过,在此决定性的问题是,行星的“真正”运动是什么,它们本来是组合的、匀速的和末受外力的圆周运动,是我们在地球上看起来显示为椭圆轨道,还是它们事实上是受外力被迫循着椭圆轨道运动。这是难从几何学和运动学上来确定的,而只能从动力学上来确定,即要用相应的受力理论来确定,因而也就是要从物理学上才能确定。

        除了本轮-均轮技巧以外,托勒密还使用了假想的均衡点,相对于它,采取了匀速的圆周运动,即相对于地球作为中心,显示出非匀速的运动。这种技巧被证明在计算上是很有用的,但是违背了中心对称性,因而具有先验假设的效果,这在自然哲学看来是不能令人信服的,后来哥白尼就特别对此进行了批评。哥白尼交换了地球和太阳的位置,其理由来自处于支配地位的运动学。也就是说,某种运动学简化的描述是可能以较大对称性来实现的。因此,在日心说模型中,行星的逆行运动可以被解释为地球周年运动的效应,在哥白尼看来它比外层的木星、火星或土星运动得慢,而比内层的水星和金星运动得快。但是,哥白尼完全坚持了保守的自然哲学立场,因为他在“自然”圆周运动的意义上把更大的简单性看作是接近实在的标志。

        近代天文学的第一位伟大的数学家约翰奈斯·开普勒认为,简单性信念也是颠扑不破的。他在1596年的《神秘的星际旅行者》中,开始多次尝试把规则体引入行星系统中,两行星之间的距离正是此规则体的内接球面和外切球面。土星、木星、火星、地球、金星和水星这6颗行星所相应的6个球面,恰好是一个处于另一个之中,而且以如下顺序分开:立方体、四面体、十二面体、二十面体和八面体。当然,开普勒的推测不可能推论到适合于一个世纪以后发现的天王星、海王星和冥王星。

        开普勒是一位不折不扣的自然科学家,不能长期沉湎于柏拉图式的推测中。他在1609年写的《天文学通论》是一篇独特的文献,是在精确观测结果的不断增加的压力下,通过一步一步的研究来解决古老的柏拉图简单性概念。与哥白尼不同,开普勒将新颖的动力学论据加进了其运动学研究中。他与哥白尼的不同还在于,太阳不再被看作处于运动学的非正圆心点的没有物理学功能的东西,而是被看作行星运动的动力因。新的任务也就是要从数学上来确定这些力。开普勒的用磁场进行的动力学解释只是一次(不成功的)最初尝试。在后来的牛顿引力理论中才取得了成功。

        天上(“月上”)世界的简单性和尘世(“月下”)世界的复杂性,在其他文化中也是普遍的。让我们来看一看古代中国的道家自然哲学。它确实是处在神话的边缘,逻辑论证也比古希腊自然哲学要少,更多是激起直觉和神往;然而,两者之间也有类似之处。道家把自然描述为巨大的有机体,受控于循环运动和节律,诸如世代、朝代和个体从出生到死亡的的生命循环,由植物、动物和人类构成的食物链,季节的更替,白天和黑夜,行星的升起和降落,如此等等。所有的事物都与其他事物处于联系之中。一个节律跟着一个节律犹如水波。什么样的力量是自然界中这种模式的终极因呢?如同恩培多克勒那样,道家理论中区别了两种相反的力量,即阴和阳,随其节律的增加或减少就支配着这个世界。《鬼谷子》(公元前4世纪)一书中写道:“阳循环返回其起点。阴极大时就返回到阳。”亚里士多德认为,所有的个体都带着其自然目的而自我运动。这里则是阴阳之道决定着个体的内部节律,那些能量也总是要返回其起点。道的循环运转模型,可以提供一系列的解释:天文学中历法的制订,气象学中的水循环、食物链和生理学中的循环系统。它对于自然中的生命节律是极富说服力的,人们天天都在体验着这种循环,并可以用来指导自己的生活。自然界表现为一个目的性的机体。

        值得注意的是,中国的自然哲学中没有原子微粒概念,因而没有发展出西方文艺复兴意义上的数理力学。相反,其核心是自然界和谐的模型,其中节律波和场使得所有的事物都与其他事物相关联。声学的领先以及早期关于磁效应和电效应的见解,在这种自然哲学中成为可理解的。道家的观点更像斯多葛派的自然哲学,而不像亚里士多德的自然哲学。斯多葛派的自然哲学关注的核心也是如同水波的巨大连续统的传播效应。这个连续统就是斯多葛派的普纽玛,其紧张和振动被认为是决定了种种自然状态。自然的丰富多采的形式仅仅是由普纽玛的紧张变化造成的短暂模式。当然,现代的思维方式已经跃进为水波、声波的驻波模式或磁场的模式。然而,无论是斯多葛派还是道家的启发性背景,都不会导致可与以原子论自然哲学为背景的伽利略力学相媲美的声场或磁场的发展。对于从复杂、无规和混沌的物质状态中出现有序所进行的描述,仅仅是定性的,而且对地下和天上运用了不同的模型。

        2.2牛顿宇宙、爱因斯坦宇宙和拉普拉斯妖

        自古以来,天文学家和哲学家都相信,天上的运动是由简单的几何定律支配着。简单性不仅仅理解为方法上简单省力所需,而哥白尼却把它作为真理的一个特征。因此,从柏拉图到哥白尼的天文学学说都声称:要将天上系统的表面的复杂性归结为某种简单的真实运动的框架中!欧几里得几何学的基本概念赋予其简单的建筑块:圆周(罗盘)和直线(尺子)。与月上世界的简单性相反,月下的尘世世界倒是真正复杂的。因此它的动力学也就至少是不能在欧几里得几何学的框架中进行数学化的。那就是柏拉图的数学原子论很快就被忘记了的原因,而亚里士多德的见解——复杂的定性的自然动力学在原则上是不可能数学化的——影响着直到文艺复兴的科学研究。

        早期的物理学家如伽利略克服了月上(“简单”)世界和月下(“复杂”)世界的界限。他们相信,天上和地下的自然动力学都是由同样的数学规律统治着。在技术上,伽利略简化了例如自由落体的动力学,他选择了一些可观测的、可测量的量而忽略了另一些约束。简言之,他创造出运用一种理想化实验情形的简化的数学模型。当然,甚至物理定律的天体模型也只考虑了几个参量,诸如行星的角速度和位置,并忽略了其他多种多样的约束条件(例如大球的密度、质量和摩擦)。从现代的观点看,甚至前苏格拉底哲学家,通过选择某些主导“参量”(例如水、火和土),也提出了关于自然界的复杂动力学的定性“模型”。

        一般地说,观测一个系统,无论它是物理的生物的还是社会的,都可以从不同状态来进行。为观测现象建立模型的策略,自古以来可能已有变化,但是建模活动的目标在某种意义上却是相同的:被观测系统中状态变化的动力学。显然,真实的状态不可能仅仅用几个可观测参量来描述,但是却假定这是可以做到的。在早期的天文学和力学中,这是数学理想化的第一步,并导致了一组理想状态的几何模型,这在今天称作模型的态空间。前苏格拉底的自然“模型”不同于现代的模型,不仅仅在于数学化和可观测性,还在于真实系统的实际状态与几何模型点之间的关系被认为是本体论上所需要的,而在现代系统中它却是由于理论、预测等等缘故而保留下来的虚构。

        最简单的框架是一个参量的模型。早期医学对哺乳动物的认识指出,健康或生病的状态与温度这个参量有关联。许多动物所表现的一些特征可以说也就是对其他动物的情绪状态:狗的耳朵状态相应于它的害怕状态,而犬齿暴露程度则是其愤怒程度的定性“参量”。把两者组合起来,就更恰当地代表了狗的情绪状态。行星的状态在中世纪可用其角速度和场所来定义。其他系统的状态可能需要两种以上的特征来定义(例如用温度、血压和脉搏速率来表示哺乳动物的健康状态)。

        在任何情况下,如果这些参量是用数值显示的,那么相应的状态空间就可以用几何空间来表示。因此,二维状态空间中的单个点所表示的两个数值参量的值,就可以表示在欧几里得几何平面上。系统状态的实际变化是可观测的,可以表示成该态空间的一条曲线。如果这条曲线上的每一个点带着记录下观测时间的标志,那么我们就获得了该模型的轨迹。有时,引进另一个时间坐标,用其时间序列来代表参量的变化,这也是很有用的。这种表示叫做轨迹图。

        中世纪的动力学概念,包括了这两种表示法。在十四世纪五十年代,波斯经院哲学家尼科尔·奥雷斯密引入了作图表示法或特质强度的几何图形。他主要是讨论了线质的情形,其延长用空间或时间(“特质经度”)线段来度量。他主张,间隔的每一点的强度,用该点的垂直纵坐标(特质纬度)来度量。