乐读窝

复杂性中的思维物质

乐读窝 > 文学理论 > 复杂性中的思维物质

第14章

书籍名:《复杂性中的思维物质》    作者:克劳斯·迈因策尔


                                    因为它的奇怪的形象,看起来形如猫头鹰的两只眼睛,所以将洛仑兹相的吸引区域叫做“奇怪吸引子”。显然,奇怪吸引子是混沌的。随着轨迹越来越密集的又不互相切断的缠绕,轨迹最终将实现何种拓扑结构呢?这是一个说明所谓分形维定义的例子:

        令M是此n维相空间的吸引子的子集。现在,让相空间被边长为E的立方体所覆盖。设N(ε)是立方体的数目,立方体中包含了吸引子M的片断。如果ε收缩到零(ε→O),那么N(ε)与ε的对数比值的负极限即D=-lim  InN(ε)/lnε被称作分形维。

        如果此吸引子是一个点(图2.14a),则分形维为零。对于稳定的极限环(图2.9),分形维为1。但是对于混沌系统,分形维不是一个整数。一般地,分形维只可能通过数值计算得到。对于洛仑兹模型,奇怪吸引子的分形维D≈2.06±0.01。

        另一个已对其混沌运动进行了实验研究的耗散系统是贝洛索夫-札鲍廷斯基反应。在此化学过程中,一个有机分子被溴离子氧化,此氧化被氧化还原系统所催化。化学反应系统中的反应物浓度的变化率,又是用非线性函数的非线性微分方程来描述的。标志贝洛索夫-札鲍廷斯基反应中的混沌行为的变量,是此氧化还原反应系统中的离子浓度。从实验中观察到,适当地组合反应物的浓度,就得到了无规的振荡。这些振荡显示为分立的颜色环。这种分立使非线性形象地显示出来。线性的演化会满足叠加原理。在这种情形下,振荡环对于叠加将互相穿透。

        相应的微分方程是自律的,即它们并不明显地依赖于时间。借助计算机辅助的可视化技术对微分运动方程描述的动力系统中的流进行研究通常很方便。它们通过离散方程,以(d-1)维彭加勒映射构造出相应的d维相空间中的轨迹截面点(参见图2.16)。所构造的点,随时间点n的增加标记为x(1),x(2),…,x(n),X(n+1),…。这个相应的方程,对于x(n)=(X1(n),…,xd-1(n)的相继的点x(n+1),具有形式x(n+1)=G(x(n),λ)。这种保守系统与耗散系统的分类,可以概括从流直到彭加勒映射。一个离散的映射方程,如果它导致相空间的体积发生收缩,它就被称作耗散的映射方程。

        一个著名的离散映射的例子是所谓的逻辑映射,它在自然科学以及社会科学中都有许多应用。从非线性到混沌的复杂动力系统的基本概念,可以借用相当简单的计算机辅助方法以这种映射来说明。因此,让我们先扼要地说明一下这个例子。在数学上,逻辑映射用二次(非线性)迭代映射来定义:xn+1=axn(1-xn);其区间0≤x≤1,控制参量a在0≤a≤4之间变化。序列x1,x2,x3,…的函数值可以由简单的袖珍计算机来计算。对于a<  3,结果收敛到一个不动点(图2.22a)。如果a继续增加到超过了临界值a1,在一定过渡时间之后序列的值就在两个值之间周期地跳跃(图2.22b)。如果a进一步增加,超过了临界值a2,周期的长度将增加一倍。如果再进一步地一增再增,那么周期每次都增加一倍,相应有临界值序列a1,a2,…。但是在超过了某个临界值ac以后,此发展就变得越来越无规和混沌(图2.22c)。图2.23a中的倍周期分叉序列受一个常数定律的支配,这是格罗斯曼和托麦在逻辑映射中发现的,后来又被费根鲍姆重新认识为一整类函数的一个普适性质(费根鲍姆常数)。超过了a的混沌区域示意在图2.23b中。

        在图2.24a-c中,示意了不同控制参量的xn向xn+1的映射,以构造出相应的吸引子,不动点,两点之间的周期振荡,无任何点吸引子或周期性的完全无规性。

        相当令人吃惊的是,像逻辑斯蒂映射这样的简单的数学定律也产生出分叉的复杂性和混沌,其可能的发展示意在图2.23a,b中。一个必要的但非充分的原因是此方程的非线性。在此情况下,复杂性增加的程度由分叉的增加来定义,分叉的增加导致了最复杂的分形情景的混沌。每一分叉说明了该非线性方程的一种可能的分支解。在物理上,它们标志了从平衡态向新的可能的平衡态的相变。如果平衡态被理解为一种对称状态,那么相变就意味着由涨落力引起的对称破缺。

        从数学上看,对称性由某种定律的不变性来定义,即关于在相应的观察者的参照系之间的一些变换的不变性。在此意义上,开普勒定律的对称性是由伽利略变换来定义的(参见图2.6a)。描述从底层加热的流体层的流体动力学(图2.20a)对于所有水平平移是不变的。化学反应方程(在无限延伸的介质中),是对于观察者使用的参照系的所有平移、旋转和反映不变的。

        然而,这些高度对称的定律允许相变到具有较少对称性的状态。例如,在贝纳德实验中,加热的流体层变得不稳定,发展起来稳恒对流涡旋(图2.20b)。这种相变意味着对称破缺,因为细微涨落引起涡旋卷偏向其中的一个或两个可能的方向。我们的例子表明,相变和对称破缺是由外部参量的变化引起的,最终导致了系统的新的宏观空-时模式,突现出有序。

        显然,热涨落自身具有不确定性,或更精确地说,具有几率性。一粒随机来回运动的粒子(布朗运动),可以用随机方程来描述,此随机方程支配着几率分布随时间的变化。确定一个过程的几率分布的最重要的手段之一,是所谓的主方程。将此过程形象化,我们可以想像一颗粒子在三维点阵中的运动。

        在时刻t找到系统在点x处的几率,随着从其他点x’向该点迁移(“移入”)而增加,但随着迁移离开(“移出”)而减少。由于“移入”构成了所有的从起始点x’到x的迁移,所以它是这些起始点之和。和的每一项,亦即找到此粒子在点x’的几率乘以(单位时间)从x’到x的迁移几率。类似地,向外的迁移就是发现了“移出”。因此,一个过程的几率分布的变化率是由随机微分方程所确定的,它是由“移入”和“移出”的差来定义的。

        涨落是由大量随机运动的粒子引起的。一个例子是流体与其分子。随机过程的分叉也就只能由几率分布的变化来确定。在图2.25中,几率函数从一个吸引子集中的浓度(图2.25a)变化到平坦的分布(图2.25b),最终变成了两个吸引子的两个极值(图2.25c),当此控制参量的增加超过了相应的临界值时。图2.25c示意了随机的对称破缺。

        在此方面,复杂性意味着一个系统有大量的自由度。当我们从外部控制一个系统时,我们可以改变其自由度。例如,在升高温度时,水分子的蒸发变得更自由而不受相互牵扯。当温度降低时,形成液滴。这种现象是分子发生关联运动并保持相互间平均距离的结果。在冰点,水结成具有了固定的分子序的冰晶。人类很早就已经熟悉了这些相变。水有不同的聚集状态,也许这就是人们将水看作一种物质基本元素的哲学观念的原因(参见2.1节)。

        材料科学提供了另一个例子。当铁磁体加热时,超过一定临界值它会失去磁性。但是,当温度降低时,磁体又重新获得其磁性。磁性是一种宏观特征,可以从微观上用自由度的变化来解释。铁磁体由许多原子磁体构成。在高温下,基元磁体随机地指向种种方向。如果将相应的磁矩加和,它们就相互抵消掉了。这在宏观水平上就观察不到磁性。低于某个临界温度时,原子磁体排列成宏观有序,产生出磁化作用的宏观特征。在两个例子中,宏观有序的突现都是由降低温度引起的,此结构在低温时形成,不丢失能量。因此,它是一种保守的(可逆的)自组织。在物理上它可以用波耳兹曼分布定律来解释,这一定律适用于能量较低,主要是在较低温度下实现的结构。

        在小分子向超分子物质实物和材料的演化中,保守自组织过程起着主要作用。在此情形下,自组织意味着在接近平衡条件下自发地形成有序结构。性质已知的简单小分子的建筑块,在此过程中自装配成为中观(或纳米)尺度的非常大的具有全新性质的复杂聚集体。这些自装配过程的化学实现方式是多种多样的。它们可以通过化学模板和基质的作用来排列成复杂的分子结构。通过自装配,已经获得了若干个巨集束,其尺寸上相当于小蛋白,包含了300个以上的原子,分子量大约为10000道尔顿。图2.26中的巨集束具有未曾预料的新颖结构性质和电子性质:在此有不同的磁性,它们对特殊的固体状态结构是典型的,对于材料科学具有重大意义。一种显著的结构性质是在大集束中存在纳米尺度的空穴。

        分子空穴可以用来作为其他化学药品,甚至人的机体中要输送的化学物的容器。许多高等有机体中都有一种贮存铁的蛋白质,叫做铁蛋白。它是一种不寻常的寄-宿系统,其构成中包括一种有机宿主(一种蛋白质)和一种可变的无机寄主(一种铁核)。