乐读窝

科技之巅 2

乐读窝 > 外国小说 > 科技之巅 2

激光显微切割原理

书籍名:《科技之巅 2》    作者:麻省理工科技评论


“古老”的原位荧光杂交技术也在单细胞化,并且与测序相结合。2014年,加州理工的Long  Cai提出了荧光原位测序技术,它能够对还在组织或培养基中的细胞利用第二代测序直接进行测序。整个技术的基础是一种新型的核酸文库构建技术,这种技术能够在生物组织内进行稳定的交联c  DNA扩增[44]  。通过高强度的显微观测、生化处理、图像处理以及生物信息学分析,人们最终可以得到目标细胞的测序序列。2015年,哈佛大学的庄小威团队在《科学》杂志上发表了他们关于在单细胞中进行高度复用的空间解析RNA图谱的研究。他们发表了一种名叫MERFISH(多重抗误差原位荧光杂交)的技术,能够在单细胞中实现数千条RNA的拷贝数和空间定位的成像[45]  。

荧光原位测序技术将空间相关的RNA-FISH技术和全转录组RNA图谱技术相结合,通过单个分子原位RNA定位来保持组织的形态。使用荧光原位测序,让分析不同空间分布或拷贝数变化的单个细胞转录组成为可能,这些分析能够协助描述组织中复杂的调解网络以及细胞类型的原位鉴定。

大多数的人体组织较厚,而且不透明。那么有没有一种方法让人们能够在保持组织原样的同时,对特定细胞进行定位和观察呢?2013年4月,斯坦福大学的Karl  Deisseroth在《自然》杂志上发表的Clarity技术,可以使小鼠组织透明化[46]  。通过Clarity,人们能够在器官中定位目标细胞的三维位置。Clarity的诞生使人们走进了器官图像分析的新纪元,改变了人们对器官内部的认知。

结合组织学和化学工程的工具,研究者们开发了一套不通过切割小鼠的大脑便能解析其三维复杂性和分子表达的方法。整个技术的核心是将小鼠大脑中的脂质置换成水凝胶聚合物。将小鼠的大脑放置于水凝胶单体的悬浮液后,大脑本身就会通过一种类似于石化的过程产生水凝胶聚合物,而且这种聚合物不会和脂质相结合。将脂质通过电泳过程移除之后,就会留下一个三维透明的大脑,且保留了所有的重要结构,如神经元、轴突、树突、突触等。

Clarity使人们能够对大脑进行完整的细节化的结构研究,对于了解健康和疾病状况下的大脑功能具有重要的意义。目前,Clarity已经被用于小鼠的大脑、胰腺、肾脏、肺、肠道和肝脏的研究中,但是对于具有很多非细胞基质组成的器官(如皮肤、齿龈等)的研究,Clarity仍具有局限性。

除了上述技术,神经科学研究者也将神经科学常用的电生理技术与测序相结合。膜片钳测序(Patch-Seq)在2015年由贝勒医学院和卡罗琳斯卡学院的Andreads  Tolias和Rickard  Sandberg共同发表在《自然·生物技术》杂志上[47]  。在过去的几十年中,科学家们一直在利用一种叫作全细胞膜片钳的技术来测量神经细胞的电活动,比如神经元产生神经冲动时的独特的电位变化。然而,每个神经元之间的基因表达水平是不同的,之前并没有能够将单细胞的基因差异和膜片钳记录相结合的研究方法。在很长的一段时间内,想要研究神经元的细胞生理活动和基因表达之间的关系是一件很困难的事情。

Pathc-seq是一项将膜片钳记录与单细胞RNA测序相结合的技术,能够被用于同时研究单个神经元的形态学、生理学和基因表达图谱等。通过追踪电生理特征,研究者可以侦探到具有特点的目标细胞,随后用膜片钳吸管将细胞内容物吸出,进行RNA测序。对于神经细胞研究而言,Patch-Seq技术能够对目标细胞进行精确的内容物提取以研究神经元的多样性,对神经系统中复杂的细胞类型的分类研究有极大的帮助。

细胞图谱的意义重大,可以说是继人类基因组测序之后的又一个“兵家必争之地”。现在的局面是顶尖研究所三足鼎立:桑格研究所、布罗德研究所和新秀Biohub。

桑格研究所是一家位于英国的研究机构,其利用基因组测序技术来推动人类对生物和疾病的认知,以改善人类的健康。1993年10月4日,当时还被称为“桑格中心”的桑格研究所在英国创立,创立之初,整个机构仅有不到50名员工,如今所有园区的员工数量已经超过3000人。以建设大规模的世界级研究中心为目标,桑格研究所用20多年的时间,从最初的测序中心发展到基因组研究领域的行业领先机构。作为一家在遗传学领域世界领先的研究机构,桑格研究所旨在对人类病原生物学研究提供能够改变目前生物医学现状的思想[48]  。

桑格研究所的细胞遗传学研究项目侧重于探索人类细胞中的基因组差异,以及在健康和疾病状况下的基因功能变化。他们实施了一个大规模的系统化基因筛选,目的是探索在自然状况和人工编辑状况下人类诱导多功能干细胞的基因变化,以及它们的分化衍生过程和其他细胞类型[49]  。目前,这个项目正在研究参与感染、先天性免疫、代谢过程的细胞类别(如巨噬细胞、肝细胞、胰岛B细胞等),并且正在计划开展一项全面反映人体内细胞类别和功能的研究项目,以帮助人们更深入地了解、诊断、治疗、监测人类疾病。

细胞遗传学项目将使用来自已知健康状况的100多名受试者的多功能诱导性干细胞,使其分化为巨噬细胞、肝细胞、胰腺细胞等。通过分化后的细胞探索在宿主与病原之间的相互作用、先天性免疫反应、代谢反应过程中的细胞水平的变化。研究者们将来自细胞遗传学的结果和来自功能基因组学的数据相结合,利用创新型的算法来研究基因调控的机理,以帮助解释疾病之间的差异。利用单细胞研究的技术,科学家们计划建立一个全面反映人体内每个细胞的表观遗传学和转录组学的参考遗传图谱。同时,他们还计划开发一项基于Crispr-Cas系统来全面检测基因组层面的编码蛋白基因和长链非编码蛋白RNA的技术,以探索基因组成分对细胞表型的影响。这项计划将开发和改善一系列创新性的工具,以更加全面地分析单细胞研究的数据。

位于美国波士顿剑桥的布罗德研究所是细胞图谱计划的发起者之一。布罗德研究所起源于来自哈佛大学和麻省理工学院的科学家们数十年的非官方合作。1995年年初,来自麻省理工学院怀特海德研究所的科学家们意识到将遗传学应用于人类疾病研究的必要性,这促成了一些遗传性医学研究的初始项目,也促使哈佛大学和麻省理工学院在癌症和人类遗传学方面开拓新方法的科学家们形成了一套高效的合作网络[50]  。随后,1998年哈佛医学院成立了化学与细胞生物研究所(ICCB),以帮助实现将化学基因组作为未来了解人类生物学和疾病的工具的目标。

这些项目说明了具有不同背景的研究者齐心协力解决分子医学问题中的重大挑战的重要性。由此可见,一个新型的正式的合作机构是十分必要的,它需要具有开放、合作、多学科交叉、能够组织任何规模的科研项目的特点。更重要的是,哈佛大学和麻省理工学院的遗传学家和生物化学家们能够互补合作,将基础的分子研究理论转化为对人类疾病的新型研究。2002—2003年,创始人依莱、埃德斯·布罗德和哈佛大学及附属医院、麻省理工学院、怀特海德研究所的研究者们勾勒出了这个新型研究机构的雏形。2003年,在依莱和埃德斯·布罗德的捐赠下,布罗德研究所正式宣告建设,并于2004年5月建成。截止到2014年,布罗德研究所总计获得超过了10亿美元的捐款,成为生物医学研究的领头者。

布罗德研究所的人类细胞图谱计划把来自世界各地的生物学家、临床医师、物理学家、计算机科学家、软件工程师和数学家们汇集起来。这些科学家们将各自不同的专业知识相互结合,为了一个共同的目标——建立全面的人类细胞遗传图谱而相互合作。只有建立了这个能够解析不同细胞类型的图谱,精确定位人体中的所有细胞,分析它们的基因表达水平,我们才能准确地描述所有的细胞活动,了解细胞网络结构。一个全面的细胞图谱使鉴定所有的细胞类类型(甚至亚型)、定位细胞的空间位置、区分不同的分化阶段和细胞状态成为可能;还使研究者能够追踪细胞谱系,比如追溯红细胞在骨髓中的干细胞来源。细胞图谱计划将会帮助鉴定不同疾病的生物标记物和各类特征,为各类疗法提供新的靶点目标,为人类生物学研究提供一个全新的视角[51]  。

2016年,Facebook首席执行官扎克伯格和他的妻子陈丽霞捐赠6亿美元创立了Biohub,以推动加利福尼亚州湾区生物医学的合作和发展。这是扎克伯格及妻子投资的第一项科学慈善机构[52]  。新秀Biohub将融合来自加州大学伯克利分校、斯坦福大学和加州大学三藩分校的科学家们来推动人类疾病的研究。Biohub的创立目标是帮助治愈、预防、操控人的一生中所有的疾病,创立未来生命科学研究的新蓝图。所有Biohub的科学家、研究院和工程师们将尝试破解人类疾病的复杂性,并为治愈疾病提供新的方法。除了合作和科学研究之外,Biohub的另一个使命是培养青年科学家成为行业的领头人。

扎克伯格和他的妻子陈丽霞将细胞图谱研究作为其30亿美元医疗研究捐赠的首个目标。人类细胞的未解之谜是很多疾病发生的根源,  Biohub的细胞图谱项目将通过研究健康人类中细胞工作的方式,尝试揭开这些谜团。其研究的重点更加侧重于在疾病发生时这些细胞发生的反应,以描述细胞在疾病刺激下的内部机理变化[53]  。

让我们期待细胞图谱为医学科学带来新的突破!

专家点评

徐迅

华大基因研究院院长,国家基因库执行主任。

细胞是组成生命的最基本单位。人体细胞究竟有多少种类,不同种类的细胞如何实现不同的功能,当疾病发生时这些细胞发生了什么样的改变?现有的知识将细胞分为400多种,但究竟有多少种谁也说不清楚。随着单细胞技术,尤其是大规模单细胞测序研究的开展,越来越多的新的细胞亚型被鉴定出来。人体细胞图谱计划试图在基因表达水平精确地定义人体的每一个细胞,如同人类基因组计划那样全面透彻地解读人体细胞“天书”。

第一个单细胞转录组研究是采用微阵列芯片技术完成的,而第二代测序技术的出现使转录组研究进入了一个被称为“RNA测序”的阶段。从2009年至2017年将近8年的时间里,单细胞转录组技术飞速发展,特别是基于纳米微升的droplet技术将单细胞RNA测序的成本降低到一个市场可以接受的水平。就是在这样的背景下,桑格研究所和布罗德研究所牵头发起了“人体单细胞图谱”计划,并且获得了Chan  Zuckerberg  Initiative基金会的大力支持。据悉,第一批资助计划将很快进入实际申请阶段。

尽管人体单细胞图谱计划还处在孕育的早期阶段,但我们已能触摸到即将带来的巨大变革,而这个变革将不亚于人类基因组计划。首先,疾病的诊断模式将迎来全新的飞跃。人体单细胞图谱提供了健康人的完整细胞目录,而疾病细胞通过单细胞RNA测序找到的与“已知目录”的差异信息将成为疾病诊断的重要线索,最终迎来一个“人体疾病细胞图谱”,让疾病能够在更早期就被诊断出来。其次,药物研发的速度将加快而成本将下降。对于已知靶点的药物,借助人体单细胞图谱的信息,将更容易通过大数据方式预测该药物的副作用,甚至针对特定病人精确地预测其是否有可能出现严重的诸如肝肾功能衰竭等副作用。

人体单细胞图谱是一个极其“大胆的”计划,想要切实落实并最终获得高质量的图谱,仍面临许多挑战。众多的世界顶尖的实验室将加入其中,如何建立标准化的操作流程,使来自不同实验室的数据可以有意义地被整合,是首当其冲需要解决的问题。

专家点评

曹虎

科特勒咨询集团(KMG)中国区总裁。

“如果你想用一个世纪的时间来寻找治疗疾病的方法,最好先把重点放在基础研究上,因为你根本无法预测这些治疗方法从何而来!”科学慈善联盟主席(Science  Philanthropy  Alliance)  Marc  Kastner在给CZ  Biohub的建议中如是说。而且Chan  和Zukerberg接受了这个建议,并且制定了一个宏伟的计划:人类细胞图谱(Te  Cell  Atlas),旨在对人体内的每一种细胞进行单细胞测序,描绘其分子特征。作为一个开源的项目,人类细胞图谱产出的数据将向所有研究者开放。它显然将对新药的研发、新治疗手段的产生发挥重要的促进作用,同时在这个项目的开展过程中产生的新技术很可能开启很多基础研究和临床研究的新篇章。

从技术上看,今天的单细胞测序技术仍然面临着至少4个方面的挑战:有效的单细胞分离;基因组扩增;测序价格;有效的数据解读。虽然单细胞测序已经在辅助生殖领域进入了初步的临床应用阶段,但是目前的数据准确性、检测周期和价格都还是临床推广的瓶颈。CZ  Biohub的联席主席斯蒂芬·夸克(Stephen  Quake)显然是这个领域的翘楚。夸克将利用细胞微流体进行单细胞分离;利用超快、高效的测序仪,极大地降低测序成本、极快地提升测序速度;使用基因组编辑(如CRISPR)进行单细胞的标记和追踪技术,基于基因活动来定位人体器官中的各种细胞。相信这些技术将在项目的推进过程中逐渐迭代,将来很有可能发展成适合在临床开展的临床检测项目,满足目前无法满足的临床需求。比如目前在肿瘤的液体活检领域,CTC(循环肿瘤细胞)已经作为成熟的检测手段用于肿瘤的复发监控。但是目前还没有办法分析CTC的基因组,了解其异质性并针对其突变情况精准用药。而用于人类细胞图谱的技术将满足这个临床的需求。再如,目前很多的肿瘤患者无法判断其原发灶的组织来源,通过对肿瘤患者进行单细胞测序,检索人类细胞图谱,临床医生将很容易判断肿瘤细胞的来源并制定更精准的治疗方案。在遗传疾病领域,我们已经知道很多遗传疾病存在基因嵌合的现象。夸克位于斯坦福大学的实验室最近就发现了由于SCN5A基因嵌合导致的长QT  综合征。

正如17年前的人类基因组计划催生了今天正在蓬勃发展的精准医疗产业,人类细胞图谱必将把基础研究、新药研发、临床研究和分子诊断带入一个全新的境界。

专家点评

田埂

元码基因联合创始人,曾任清华大学基因组与合成生物学中心主管,华大基因华北区第一负责人,天津华大创始人、总经理,深圳华大基因研究院研发副主管。

意义堪比人类基因组计划的人类细胞图谱项目,将破译出人体中每个细胞的类型和特性,构建健康人体的参考图。人类细胞图谱是生命科学领域很长一段时期以来最为振奋人心的提案。对于健康和疾病而言,细胞是生命最基础的组成部分,只有对细胞有清晰的了解,才能够了解病理机制,提供有效的治疗方案。这一项目的完成对整个人类来说无疑具有非常重大的意义,它使人类向真正的“个性化医疗”时代又迈进了一步。

细胞图谱项目是医学上一场革命的开始,但这场革命的成功将需要更长的时间。有可能“理想很丰满,但现实却很骨感”。单从技术层面上看,不断发展的科学技术完全可以支持细胞图谱绘制的实现,如细胞微流体、高效的测序仪和先进的标记及染色技术等。从经济角度上看,现在的测序成本已经低至1个细胞6美分,人类对自身研究的需求远远可以让这个价格显得微不足道。

细胞图谱是一项基础工程,对于这项技术的复杂度和工作量,不同的科学家在认识上还存在着一些分歧。有的科学家认为人体内细胞的种类和数目繁多,有的还存在众多亚型,使得人类细胞图谱项目比人类基因组计划有更多的未知难度和更大的工作量。对此我们则持乐观的态度,“莫道浮云遮蔽日,严冬过尽绽春蕾”,实验科学永远要在做了之后才能真正地挖掘出意义。细胞图谱对于科学体系与细胞机制的推动会在未来百年之内不断发酵和沉淀。我们相信,通过完成这项有着革命性意义的工作,会让人类细胞图谱项目成为21世纪最耀眼的注脚之一。